Gastrointestinal complications in critical care patients and effects of mechanical ventilation on the gastrointestinal tract

Adham E. Obeidat, Sandeep Randhawa

Cite

Obeidat AE, Randhawa S. Gastrointestinal complications in critical care patients and effects of mechanical ventilation on the gastrointestinal tract. J Mech Vent 2021; 2(1):17-32.

Abstract

Patients in the intensive care unit (ICU) especially those who require mechanical ventilation are at increased risk for developing gastrointestinal (GI) complications such as bleeding, infection, and motility dysfunction. It is estimated that the prevalence of GI complications in those patients is approximately 50-80% and lots of those go undiagnosed.

Complications can affect different parts of the GI system, including the esophagus, stomach, small intestine, large intestine, liver, and pancreas. Effects might include dysmotility, diarrhea, inflammation, infection, direct mucosal injuries, ulcerations, and bleeding, and it can be associated with high mortality rates. Moreover, it is believed that the GI tract has a significant contribution in the development of multiple organ dysfunction syndrome (MODS) in critically ill patients.

Mechanical ventilation either alone or in association with other critical illness may have a multitude of effects on almost all the organs of the gastro-intestinal tract. Attention of those interaction and side effects can improve outcomes and potentially mortality.

In this review, we describe the mechanisms proposed for mechanical ventilation induced GI complications and
different GI complications which can affect the critically ill patient.

Keywords

PEEP, Prone position, Dysmotility, GERD, GI bleeding, Ileus, Aspiration, Acalculous cholecystitis

References

1. Adike A, Quigley EMM. Gastrointestinal motility problems in critical care: a clinical perspective. J Dig Dis 2014;15:335-344.
https://doi.org/10.1111/1751-2980.12147
PMid:24673805
2. Hu B, Sun R, Wu A, et al. Severity of acute gastrointestinal injury grade is a predictor of all-cause mortality in critically ill patients: a multicenter, prospective, observational study. Crit Care 2017; 21:188.
https://doi.org/10.1186/s13054-017-1780-4
PMid:28709443 PMCid:PMC5513140
3. Ye Z, Reintam Blaser A, Lytvyn L, et al. Gastrointestinal bleeding prophylaxis for critically ill patients: a clinical practice guideline. BMJ 2020;368:l6722.
https://doi.org/10.1136/bmj.l6722
PMid:31907223
4. Klingensmith NJ, Coopersmith CM. The gut as the motor of multiple organ dysfunction in critical illness. Crit Care Clin 2016; 32:203-212.
https://doi.org/10.1016/j.ccc.2015.11.004
PMid:27016162 PMCid:PMC4808565
5. Cournand A, Motley HL. Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Physiol 1948; 152:162-174.
https://doi.org/10.1152/ajplegacy.1947.152.1.162
PMid:18903440
6. Jardin F, Farcot JC, Boisante L, et al. Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med 1981; 304:387-392.
https://doi.org/10.1056/NEJM198102123040703
PMid:7005679
7. Luecke T, Pelosi P. Clinical review: Positive end-expiratory pressure and cardiac output. Crit Care 2005; 9:607-621.
https://doi.org/10.1186/cc3877
PMid:16356246 PMCid:PMC1414045
8. Mutlu GM, Mutlu EA, Factor P. GI complications in patients receiving mechanical ventilation. Chest 2001; 119:1222-1241.
https://doi.org/10.1378/chest.119.4.1222
PMid:11296191
9. Dorinsky PM, Hamlin RL, Gadek JE. Alterations in regional blood flow during positive end-expiratory pressure ventilation. Crit Care Med 1987;15:106-113.
https://doi.org/10.1097/00003246-198702000-00005
PMid:3542385
10. Beyer J, Conzen P, Schosser R, et al. The effect of PEEP ventilation on hemodynamics and regional blood flow with special regard to coronary blood flow. Thorac Cardiovasc Surg 1980; 28:128-132.
https://doi.org/10.1055/s-2007-1022063
PMid:6156499
11. Beyer J, Beckenlechner P, Messmer K. The influence of PEEP ventilation on organ blood flow and peripheral oxygen delivery. Intensive Care Med 1982; 8:75-80.
https://doi.org/10.1007/BF01694870
PMid:7042792
12. Johnson DJ, Johannigman JA, Branson RD, et al. The effect of low dose dopamine on gut hemodynamics during PEEP ventilation for acute lung injury. J Surg Res 1991; 50:344-349.
https://doi.org/10.1016/0022-4804(91)90201-V
13. Bersten AD, Gnidec AA, Rutledge FS, et al. Hyperdynamic sepsis modifies a PEEP-mediated redistribution in organ blood flows. Am Rev Respir Dis 1990; 141:1198-1208.
https://doi.org/10.1164/ajrccm/141.5_Pt_1.1198
PMid:2187382
14. Bredenberg CE, Paskanik AM. Relation of portal hemodynamics to cardiac output during mechanical ventilation with PEEP. Ann Surg 1983; 198:218-222.
https://doi.org/10.1097/00000658-198308000-00018
PMid:6347103 PMCid:PMC1353083
15. Sha M, Saito Y, Yokoyama K, et al. Effects of continuous positive-pressure ventilation on hepatic blood flow and intrahepatic oxygen delivery in dogs. Crit Care Med 1987; 15:1040-1043.
https://doi.org/10.1097/00003246-198711000-00010
PMid:3315466
16. Love R, Choe E, Lippton H, et al. Positive end-expiratory pressure decreases mesenteric blood flow despite normalization of cardiac output. J Trauma 1995; 39:195-199.
https://doi.org/10.1097/00005373-199508000-00003
PMid:7674385
17. Winsö O, Biber B, Gustavsson B, et al. Portal blood flow in man during graded positive end-expiratory pressure ventilation. Intensive Care Med 1986; 12:80-85.
https://doi.org/10.1007/BF00254516
PMid:3517099
18. Matuschak GM, Pinsky MR, Rogers RM. Effects of positive end-expiratory pressure on hepatic blood flow and performance. J Appl Physiol 1987; 62:1377-1383.
https://doi.org/10.1152/jappl.1987.62.4.1377
PMid:2954939
19. Selldén H, Sjövall H, Ricksten SE. Sympathetic nerve activity and central haemodynamics during mechanical ventilation with positive end-expiratory pressure in rats. Acta Physiol Scand 1986; 127:51-60.
https://doi.org/10.1111/j.1748-1716.1986.tb07875.x
PMid:3524116
20. Chernow B, Soldano S, Cook D, et al. Positive end-expiratory pressure increases plasma catecholamine levels in non-volume loaded dogs. Anaesth Intensive Care 1986; 14:421-425.
https://doi.org/10.1177/0310057X8601400416
PMid:3551676
21. Ranieri VM, Suter PM, Tortorella C, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282:54-61.
https://doi.org/10.1001/jama.282.1.54
PMid:10404912
22. Steinberg S, Azar G, Love R, et al. Dopexamine prevents depression of mesenteric blood flow caused by positive end-expiratory pressure in rats. Surgery 1996; 120:592-597.
https://doi.org/10.1016/S0039-6060(96)80005-5
23. Hirsch LJ, Rone AS. Mesenteric blood flow response to dopamine infusion during myocardial infarction in the awake dog. Circ Shock 1983; 10:173-178.
24. Backer D De. The effects of positive end-expiratory pressure on the splanchnic circulation. Intensive Care Med 2000; 26:361-363.
https://doi.org/10.1007/s001340051168
PMid:10872126
25. Aneman A, Eisenhofer G, Fändriks L, et al. Splanchnic circulation and regional sympathetic outflow during peroperative PEEP ventilation in humans. Br J Anaesth 1999; 82:838-842.
https://doi.org/10.1093/bja/82.6.838
PMid:10562775
26. Eipel C, Abshagen K, Vollmar B. Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J Gastroenterol 2010; 16:6046-6057.
https://doi.org/10.3748/wjg.v16.i48.6046
PMid:21182219 PMCid:PMC3012579
27. Kiefer P, Nunes S, Kosonen P, et al. Effect of positive end-expiratory pressure on splanchnic perfusion in acute lung injury. Intensive Care Med 2000; 26:376-383.
https://doi.org/10.1007/s001340051170
PMid:10872128
28. Sarkar S, Bhattacharya P, Kumar I, et al. Changes of splanchnic perfusion after applying positive end expiratory pressure in patients with acute respiratory distress syndrome. Indian J Crit care Med 2009; 13:12-16.
https://doi.org/10.4103/0972-5229.53109
PMid:19881173 PMCid:PMC2772258
29. Sitbon P, Teboul JL, Duranteau J, et al. Effects of tidal volume reduction in acute respiratory distress syndrome on gastric mucosal perfusion. Intensive Care Med 2001; 27:911-915.
https://doi.org/10.1007/s001340100931
PMid:11430549
30. Fournell A, Scheeren TW, Schwarte LA. Oxygenation of the intestinal mucosa in anaesthetized dogs is attenuated by intermittent positive pressure ventilation (IPPV) with positive end-expiratory pressure (PEEP). Adv Exp Med Biol 1997; 428:385-389.
https://doi.org/10.1007/978-1-4615-5399-1_55
PMid:9500075
31. Berendes E, Lippert G, Loick HM, et al. Effects of positive end-expiratory pressure ventilation on splanchnic oxygenation in humans. J Cardiothorac Vasc Anesth 1996; 10:598-602.
https://doi.org/10.1016/S1053-0770(96)80136-4
32. Akinci IO, Cakar N, Mutlu GM, et al. Gastric intramucosal pH is stable during titration of positive end-expiratory pressure to improve oxygenation in acute respiratory distress syndrome. Crit Care 2003; 7:R17-23.
https://doi.org/10.1186/cc2172
PMiD: 12793886 PMCiD: PMC270676
33. Träger K, Radermacher P, Georgieff M. PEEP and hepatic metabolic performance in septic shock. Intensive Care Med 1996; 22:1274-1275.
https://doi.org/10.1007/BF01709351
PMid:9120128
34. Vignon P, Evrard B, Asfar P, et al. Fluid administration and monitoring in ARDS: which management? Intensive Care Med 2020; 46:2252-2264.
https://doi.org/10.1007/s00134-020-06310-0
PMid:33169217 PMCid:PMC7652045
35. Fan E, Sorbo L Del, Goligher EC, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2017; 195:1253-1263.
https://doi.org/10.1164/rccm.201703-0548st
PMID: 28459336
36. Putensen C, Zech S, Wrigge H, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001; 164:43-49.
https://doi.org/10.1164/ajrccm.164.1.2001078
PMid:11435237
37. Bryan AC. Pulmonary physiotherapy in the pediatric age group. Comments of a devil’s advocate. Am Rev Respir Dis 1974; 110:143-144.
38. Laet IE De, Malbrain MLNG, Waele JJ De. A clinician’s guide to management of intra-abdominal hypertension and abdominal compartment syndrome in critically ill patients. Crit Care 2020; 24:97.
https://doi.org/10.1186/s13054-020-2782-1
PMid:32204721 PMCid:PMC7092484
39. Michelet P, Roch A, Gainnier M, et al. Influence of support on intra-abdominal pressure, hepatic kinetics of indocyanine green and extravascular lung water during prone positioning in patients with ARDS: a randomized crossover study. Crit Care 2005; 9:R251-7.
https://doi.org/10.1186/cc3513
PMiD: 15987398 PMCiD: PMC1175887
40. Hill LT, Hill B, Miller MG, et al. The effect of intra-abdominal hypertension on gastro- intestinal function. SAJCC 2011; 27(1)12-19.
41. Keenan JC, Cortes-Puentes GA, Zhang L, et al. PEEP titration: the effect of prone position and abdominal pressure in an ARDS model. Intensive Care Med Exp 2018; 6:3.
https://doi.org/10.1186/s40635-018-0170-9
PMid:29380160 PMCid:PMC5789120
42. Hering R, Vorwerk R, Wrigge H,et al. Prone positioning, systemic hemodynamics, hepatic indocyanine green kinetics, and gastric intramucosal energy balance in patients with acute lung injury. Intensive Care Med 2002; 28:53-58.
https://doi.org/10.1007/s00134-001-1166-5
PMid:11819000
43. Hering R, Wrigge H, Vorwerk R, et al. The effects of prone positioning on intraabdominal pressure and cardiovascular and renal function in patients with acute lung injury. Anesth Analg 2001;9 2:1226-1231.
https://doi.org/10.1097/00000539-200105000-00027
PMid:11323351
44. Matejovic M, Rokyta RJ, Radermacher P, et al. Effect of prone position on hepato-splanchnic hemodynamics in acute lung injury. Intensive Care Med 2002; 28:1750-1755.
https://doi.org/10.1007/s00134-002-1524-y
PMid:12447518
45. Kiefer P, Morin A, Putzke C, et al. Influence of prone position on gastric mucosal-arterial PCO2 gradients. Intensive Care Med 2001; 27:1227-1230.
https://doi.org/10.1007/s001340100999
PMid:11534573
46. Keskinen P, Leppaniemi A, Pettila V, et al. Intra-abdominal pressure in severe acute pancreatitis. World J Emerg Surg 2007; 2:2.
https://doi.org/10.1186/1749-7922-2-2
PMid:17227591 PMCid:PMC1800837
47. Strang SG, Lieshout EMM Van, Breederveld RS, et al. A systematic review on intra-abdominal pressure in severely burned patients. Burns 2014; 40:9-16.
https://doi.org/10.1016/j.burns.2013.07.001
PMid:24050978
48. Tiwari AR, Pandya JS. Study of the occurrence of intra-abdominal hypertension and abdominal compartment syndrome in patients of blunt abdominal trauma and its correlation with the clinical outcome in the above patients. World J Emerg Surg 2016; 11:9.
https://doi.org/10.1186/s13017-016-0066-5
PMid:26870155 PMCid:PMC4750285
49. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a Protective-Ventilation Strategy on Mortality in the Acute Respiratory Distress Syndrome. N Engl J Med 1998; 338:347-
https://doi.org/10.1056/NEJM199802053380602
PMid:9449727
50. Bille-Brahe NE, Sorensen MB, Rorth M, et al. Cardiovascular effects of induced hypercarbia during halothane-nitrous oxide anaesthesia. Acta Chir Scand Suppl 1976; 472:127-132.
51. Carvalho CR, Barbas CS, Medeiros DM, et al. Temporal hemodynamic effects of permissive hypercapnia associated with ideal PEEP in ARDS. Am J Respir Crit Care Med 1997; 156:1458-1466.
https://doi.org/10.1164/ajrccm.156.5.9604081
PMid:9372661
52. Cardenas VJ, Zwischenberger JB, Tao W, et al. Correction of blood pH attenuates changes in hemodynamics and organ blood flow during permissive hypercapnia. Crit Care Med 1996; 24:827-834.
https://doi.org/10.1097/00003246-199605000-00017
PMid:8706461
53. Kiefer P, Nunes S, Kosonen P, et al. Effect of an acute increase in PCO2 on splanchnic perfusion and metabolism. Intensive Care Med 2001; 27:775-778.
https://doi.org/10.1007/s001340100898
PMid:11398707
54. Mas A, Saura P, Joseph D, et al. Effect of acute moderate changes in PaCO2 on global hemodynamics and gastric perfusion. Crit Care Med 2000; 28:360-365.
https://doi.org/10.1097/00003246-200002000-00012
PMid:10708167
55. Dutton R, Levitzky M, Berkman R. Carbon dioxide and liver blood flow. Bull Eur Physiopathol Respir 1976; 12:265-273.
56. Fujita Y, Sakai T, Ohsumi A, et al. Effects of hypocapnia and hypercapnia on splanchnic circulation and hepatic function in the beagle. Anesth Analg 1989; 69:152-157.
https://doi.org/10.1213/00000539-198908000-00002
PMid:2504078
57. Pihl BG, Pohl AL, Dickens RA, et al. Effect of chronic hypercapnia on gastric secretion in the dog. Ann Surg 1967; 165:254-266.
https://doi.org/10.1097/00000658-196702000-00013
PMid:6017072 PMCid:PMC1617410
58. Feihl F, Perret C. Permissive hypercapnia. How permissive should we be? Am J Respir Crit Care Med 1994; 150:1722-1737.
https://doi.org/10.1164/ajrccm.150.6.7952641
PMid:7952641
59. Kregenow DA, Swenson ER. The lung and carbon dioxide: implications for permissive and therapeutic hypercapnia. Eur Respir J 2002; 20:6-11.
https://doi.org/10.1183/09031936.02.00400802
PMid:12166583
60. Currin RT, Gores GJ, Thurman RG, et al. Protection by acidotic pH against anoxic cell killing in perfused rat liver: evidence for a pH paradox. FASEB J 1991; 5:207-210.
https://doi.org/10.1096/fasebj.5.2.2004664
PMid:2004664
61. Caldwell-Kenkel JC, Currin RT, Coote A, et al. Reperfusion injury to endothelial cells after cold storage of rat livers: protection by mildly acidic pH and lack of protection by antioxidants. Transpl Int Off J Eur Soc Organ Transplant 1995; 8:77-85.
https://doi.org/10.1111/j.1432-2277.1995.tb01480.x
62. Wang L, Yang L, Yang J, et al. Effects of permissive hypercapnia on laparoscopic surgery for rectal carcinoma. Gastroenterol Res Pract 2019; 2019:3903451.
https://doi.org/10.1155/2019/3903451
PMid:31687013 PMCid:PMC6800955
63. Nind G, Chen W-H, Protheroe R, et al. Mechanisms of gastroesophageal reflux in critically ill mechanically ventilated patients. Gastroenterology 2005; 128:600-606.
https://doi.org/10.1053/j.gastro.2004.12.034
PMid:15765395
64. Schallom M, Orr J, Metheny N, et al. Gastroesophageal reflux in critically ill patients. Dimens Crit Care Nurs 2013; 32:69-77.
https://doi.org/10.1097/DCC.0b013e318280836b
PMid:23388865
65. Dennesen P, Ven A van der, Vlasveld M, et al. Inadequate salivary flow and poor oral mucosal status in intubated intensive care unit patients. Crit Care Med 2003; 31:781-786.
https://doi.org/10.1097/01.CCM.0000053646.04085.29
PMid:12626984
66. McClave SA, DeMeo MT, DeLegge MH, et al. North American Summit on Aspiration in the Critically Ill Patient: consensus statement. JPEN 2002; 26:S80-85.
https://doi.org/10.1177/014860710202600613
PMid:12405628
67. Heyland DK, Drover JW, MacDonald S, et al. Effect of postpyloric feeding on gastroesophageal regurgitation and pulmonary microaspiration: results of a randomized controlled trial. Crit Care Med 2001; 29:1495-1501.
https://doi.org/10.1097/00003246-200108000-00001
PMid:11505114
68. Jiyong J, Tiancha H, Huiqin W, et al. Effect of gastric versus post-pyloric feeding on the incidence of pneumonia in critically ill patients: observations from traditional and Bayesian random-effects meta-analysis. Clin Nutr 2013; 32:8-15.
https://doi.org/10.1016/j.clnu.2012.07.002
PMid:22853861
69. Alhazzani W, Almasoud A, Jaeschke R, et al. Small bowel feeding and risk of pneumonia in adult critically ill patients: a systematic review and meta-analysis of randomized trials. Crit Care 2013; 17:R127.
https://doi.org/10.1186/cc12806
PMid:23820047 PMCid:PMC4056009
70. Ho KM, Dobb GJ, Webb SAR. A comparison of early gastric and post-pyloric feeding in critically ill patients: a meta-analysis. Intensive Care Med 2006; 32:639-649.
https://doi.org/10.1007/s00134-006-0128-3
PMid:16570149
71. Marik PE, Zaloga GP. Gastric versus post-pyloric feeding: a systematic review. Crit Care 2003; 7:R46-51.
https://doi.org/10.1186/cc2190
PMid:12793890 PMCid:PMC270685
72. Usai-Satta P, Bellini M, Morelli O, et al. Gastroparesis: New insights into an old disease. World J Gastroenterol 2020; 26:2333-2348.
https://doi.org/10.3748/wjg.v26.i19.2333
PMid:32476797 PMCid:PMC7243643
73. Ritz MA, Fraser R, Edwards N, et al. Delayed gastric emptying in ventilated critically ill patients: measurement by 13 C-octanoic acid breath test. Crit Care Med 2001; 29:1744-1749.
https://doi.org/10.1097/00003246-200109000-00015
PMid:11546976
74. Deane AM, Zaknic A V, Summers MJ, et al. Intrasubject variability of gastric emptying in the critically ill using a stable isotope breath test. Clin Nutr 2010; 29:682-686.
https://doi.org/10.1016/j.clnu.2010.03.007
PMid:20409622
75. Ghoos YF, Maes BD, Geypens BJ, et al. Measurement of gastric emptying rate of solids by means of a carbon-labeled octanoic acid breath test. Gastroenterology 1993; 104:1640-1647.
https://doi.org/10.1016/0016-5085(93)90640-X
76. Enweluzo C, Aziz F. Gastroparesis: a review of current and emerging treatment options. Clin Exp Gastroenterol 2013; 6:161-165.
https://doi.org/10.2147/CEG.S50236
PMid:24039443 PMCid:PMC3771488
77. DeLegge MH. Managing gastric residual volumes in the critically ill patient: an update. Curr Opin Clin Nutr Metab Care 2011; 14:193-196.
https://doi.org/10.1097/MCO.0b013e328341ede7
PMid:21102316
78. Nguyen NQ, Ng MP, Chapman M, et al. The impact of admission diagnosis on gastric emptying in critically ill patients. Crit Care 2007; 11:R16.
https://doi.org/10.1186/cc5685
PMid:17288616 PMCid:PMC2151889
79. Lam SW, Nguyen NQ, Ching K, et al. Gastric feed intolerance is not increased in critically ill patients with type II diabetes mellitus. Intensive Care Med 2007; 33:1740-1745.
https://doi.org/10.1007/s00134-007-0777-x
PMid:17554523
80. Chapman M, Fraser R, Vozzo R, et al. Antro-pyloro-duodenal motor responses to gastric and duodenal nutrient in critically ill patients. Gut 2005; 54:1384-1390.
https://doi.org/10.1136/gut.2005.065672
PMid:15923669 PMCid:PMC1774690
81. Grover M, Farrugia G, Stanghellini V. Gastroparesis: a turning point in understanding and treatment. Gut 2019; 68:2238-2250.
https://doi.org/10.1136/gutjnl-2019-318712
PMid:31563877 PMCid:PMC6874806
82. Deane AM, Fraser RJ, Chapman MJ. Prokinetic drugs for feed intolerance in critical illness: current and potential therapies. Crit care Resusc 2009;11:132-143.
PMiD: 19485878
83. Camilleri M, Parkman HP, Shafi MA, et al. Clinical guideline: management of gastroparesis. Am J Gastroenterol 2013; 108:18-37.
https://doi.org/10.1038/ajg.2012.373
PMid:23147521 PMCid:PMC3722580
84. Ariès P, Huet O. Ileus in the critically ill: causes, treatment and prevention. Minerva Anestesiol 2020; 86:974-983.
https://doi.org/10.23736/S0375-9393.20.14778-3
PMid:32580530
85. Reintam A, Parm P, Redlich U,et al. Gastrointestinal failure in intensive care: a retrospective clinical study in three different intensive care units in Germany and Estonia. BMC Gastroenterol 2006;6:19.
https://doi.org/10.1186/1471-230X-6-19
PMid:16792799 PMCid:PMC1513588
86. Bauer AJ, Schwarz NT, Moore BA, et al. Ileus in critical illness: mechanisms and management. Curr Opin Crit Care 2002; 8:152-157.
https://doi.org/10.1097/00075198-200204000-00011
PMid:12386517
87. Caddell KA, Martindale R, McClave SA, et al. Can the intestinal dysmotility of critical illness be differentiated from postoperative ileus? Curr Gastroenterol Rep 2011; 13:358-367.
https://doi.org/10.1007/s11894-011-0206-8
PMid:21626118
88. Cullen JJ, Caropreso DK, Hemann LL,et al. Pathophysiology of adynamic ileus. Dig Dis Sci 1997; 42:731-737.
https://doi.org/10.1023/A:1018847626936
PMid:9125641
89. Smith CE, Marien L, Brogdon C, et al. Diarrhea associated with tube feeding in mechanically ventilated critically ill patients. Nurs Res 1990; 39:148-152.
https://doi.org/10.1097/00006199-199005000-00005
PMid:2111543
90. van der Spoel JI, Oudemans-van Straaten HM, et al. Laxation of critically ill patients with lactulose or polyethylene glycol: a two-center randomized, double-blind, placebo-controlled trial. Crit Care Med 2007; 35:2726-2731.
https://doi.org/10.1097/01.CCM.0000287526.08794.29
PMid:17893628
91. Ogilvie H. Large-intestine colic due to sympathetic deprivation; a new clinical syndrome. Br Med J 1948; 2:671-673.
https://doi.org/10.1136/bmj.2.4579.671
PMid:18886657 PMCid:PMC2091708
92. Jain A, Vargas HD. Advances and challenges in the management of acute colonic pseudo-obstruction (ogilvie syndrome). Clin Colon Rectal Surg 2012; 25:37-45.
https://doi.org/10.1055/s-0032-1301758
PMid:23449274 PMCid:PMC3348732
93. Durai R. Colonic pseudo-obstruction. Singapore Med J 2009; 50:237-244.
PMiD: 19352564
94. Haj M, Haj M, Rockey DC. Ogilvie’s syndrome: management and outcomes. Medicine 2018; 97:27.
https://doi.org/10.1097/MD.0000000000011187
PMid:29979381 PMCid:PMC6076157
95. Dark DS, Pingleton SK. Nonhemorrhagic gastrointestinal complications in acute respiratory failure. Crit Care Med 1989; 17:755-758.
https://doi.org/10.1097/00003246-198908000-00007
PMid:2752769
96. Hernandez G, Velasco N, Wainstein C, et al. Gut mucosal atrophy after a short enteral fasting period in critically ill patients. J Crit Care 1999; 14:73-77.
https://doi.org/10.1016/S0883-9441(99)90017-5
97. DeMeo M, Kolli S, Keshavarzian A, et al. Beneficial effect of a bile acid resin binder on enteral feeding induced diarrhea. Am J Gastroenterol 1998; 93:967-971.
https://doi.org/10.1111/j.1572-0241.1998.00289.x
PMid:9647030
98. Cook DJ, Griffith LE, Walter SD,et al. The attributable mortality and length of intensive care unit stay of clinically important gastrointestinal bleeding in critically ill patients. Crit Care 2001; 5:368-375.
https://doi.org/10.1186/cc1071
PMid:11737927 PMCid:PMC83859
99. Cook D, Guyatt G. Prophylaxis against upper gastrointestinal bleeding in hospitalized patients. N Engl J Med 2018; 378:2506-2516.
https://doi.org/10.1056/NEJMra1605507
PMid:29949497
100. Krag M, Perner A, Wetterslev J, et al. Prevalence and outcome of gastrointestinal bleeding and use of acid suppressants in acutely ill adult intensive care patients. Intensive Care Med 2015; 41:833-845.
https://doi.org/10.1007/s00134-015-3725-1
PMid:25860444
101. Wilmer A, Tack J, Frans E, et al. Duodenogastroesophageal reflux and esophageal mucosal injury in mechanically ventilated patients. Gastroenterology 1999; 116:1293-1299.
https://doi.org/10.1016/S0016-5085(99)70492-0
102. Mazzeffi M, Kiefer J, Greenwood J, et al. Epidemiology of gastrointestinal bleeding in adult patients on extracorporeal life support. Intensive Care Med 2015; 41:2015.
https://doi.org/10.1007/s00134-015-4006-8
PMid:26264245
103. Cook DJ, Fuller HD, Guyatt GH, et al. Risk factors for gastrointestinal bleeding in critically ill patients. Canadian Critical Care Trials Group. N Engl J Med 1994; 330:377-381.
https://doi.org/10.1056/NEJM199402103300601
PMid:8284001
104. Alhazzani W, Alshamsi F, Belley-Cote E, et al. Efficacy and safety of stress ulcer prophylaxis in critically ill patients: a network meta-analysis of randomized trials. Intensive Care Med 2018; 44:1-11.
https://doi.org/10.1007/s00134-017-5005-8
PMid:29199388 PMCid:PMC5770505
105. Alshamsi F, Belley-Cote E, Cook D, et al. Efficacy and safety of proton pump inhibitors for stress ulcer prophylaxis in critically ill patients: a systematic review and meta-analysis of randomized trials. Crit Care 2016; 20:120.
https://doi.org/10.1186/s13054-016-1305-6
PMid:27142116 PMCid:PMC4855320
106. Barbateskovic M, Marker S, Granholm A, et al. Stress ulcer prophylaxis with proton pump inhibitors or histamin-2 receptor antagonists in adult intensive care patients: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med 2019; 45:143-158.
https://doi.org/10.1007/s00134-019-05526-z
PMid:30680444
107. Huang H-B, Jiang W, Wang C-Y,et al. Stress ulcer prophylaxis in intensive care unit patients receiving enteral nutrition: a systematic review and meta-analysis. Crit Care 2018; 22:20.
https://doi.org/10.1186/s13054-017-1937-1
PMid:29374489 PMCid:PMC5787340
108. Huang J, Cao Y, Liao C, et al. Effect of histamine-2-receptor antagonists versus sucralfate on stress ulcer prophylaxis in mechanically ventilated patients: a meta-analysis of 10 randomized controlled trials. Crit Care 2010; 14:R194.
https://doi.org/10.1186/cc9312
PMid:21034484 PMCid:PMC3219301
109. Toews I, George AT, Peter J V,et al. Interventions for preventing upper gastrointestinal bleeding in people admitted to intensive care units. Cochrane database Syst Rev 2018; 6:CD008687.
https://doi.org/10.1002/14651858.CD008687.pub2
PMid:29862492 PMCid:PMC6513395
110. Krag M, Marker S, Perner A, et al. Pantoprazole in Patients at Risk for Gastrointestinal Bleeding in the ICU. N Engl J Med 2018; 379:2199-2208.
https://doi.org/10.1056/NEJMoa1714919
PMid:30354950
111. Wang Y, Ye Z, Ge L, et al. Efficacy and safety of gastrointestinal bleeding prophylaxis in critically ill patients: systematic review and network meta-analysis. BMJ 2020; 368:l6744.
https://doi.org/10.1136/bmj.l6744
PMid:31907166 PMCid:PMC7190057
112. Agrawal A, Alagusundarmoorthy SS, Jasdanwala S. Pancreatic involvement in critically ill patients. 2015; 16:346-355.
113. Hardt PD, Mayer K, Ewald N. Exocrine pancreatic involvement in critically ill patients. Curr Opin Clin Nutr Metab Care 2009; 12:168-174.
https://doi.org/10.1097/MCO.0b013e328322437e
PMid:19202388
114. Nanas S, Angelopoulos E, Tsikriki S, et al. Propofol-induced hyperamylasaemia in a general intensive care unit. Anaesth Intensive Care 2007; 35:920-923.
https://doi.org/10.1177/0310057X0703500610
PMid:18084983
115. Muniraj T, Aslanian HR. Hypertriglyceridemia independent propofol-induced pancreatitis. JOP 2012; 13:451-453.
https://doi.org/10.6092/1590-8577/822
PMID: 22797405
116. Bai HX, Giefer M, Patel M, et al. The association of primary hyperparathyroidism with pancreatitis. J Clin Gastroenterol 2012; 46:656-661.
https://doi.org/10.1097/MCG.0b013e31825c446c
PMid:22874807 PMCid:PMC4428665
117. Liu KJ, Atten MJ, Lichtor T, et al. Serum amylase and lipase elevation is associated with intracranial events. Am Surg 2001; 67:215-220.
PMID: 11270877
118. Vitale GC, Larson GM, Davidson PR, et al. Analysis of hyperamylasemia in patients with severe head injury. J Surg Res 1987; 43:226-233.
https://doi.org/10.1016/0022-4804(87)90075-8
119. Yadav D, Nair S, Norkus EP, et al. Nonspecific hyperamylasemia and hyperlipasemia in diabetic ketoacidosis: incidence and correlation with biochemical abnormalities. Am J Gastroenterol 2000; 95:3123-3128.
https://doi.org/10.1111/j.1572-0241.2000.03279.x
PMid:11095328
120. Haddad NG, Croffie JM, Eugster EA. Pancreatic enzyme elevations in children with diabetic ketoacidosis. J Pediatr 2004; 145:122-124.
https://doi.org/10.1016/j.jpeds.2004.03.050
PMid:15238920
121. Nair S, Yadav D, Pitchumoni CS. Association of diabetic ketoacidosis and acute pancreatitis: observations in 100 consecutive episodes of DKA. Am J Gastroenterol 2000; 95:2795-2800.
https://doi.org/10.1111/j.1572-0241.2000.03188.x
PMid:11051350
122. Vaziri ND, Chang D, Malekpour A, et al. Pancreatic enzymes in patients with end-stage renal disease maintained on hemodialysis. Am J Gastroenterol 1988; 83:410-412.
PMID: 2450453
123. Manjuck J, Zein J, Carpati C, et al. Clinical significance of increased lipase levels on admission to the ICU. Chest 2005; 127:246-250.
https://doi.org/10.1378/chest.127.1.246
PMid:15653991
124. Lee CC, Chung WY, Shih YH. Elevated amylase and lipase levels in the neurosurgery intensive care unit. J Chin Med Assoc 2010; 73:8-14.
https://doi.org/10.1016/S1726-4901(10)70015-0
125. Tana M, Tana C, Cocco G, et al. Acute acalculous cholecystitis and cardiovascular disease: a land of confusion. J Ultrasound 2015; 18:317-320.
https://doi.org/10.1007/s40477-015-0176-z
PMid:26550069 PMCid:PMC4630273
126. Jones MW, Ferguson T. Acalculous Cholecystitis. [Updated 2020 Oct 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459182/
127. Kalliafas S, Ziegler DW, Flancbaum L, et al. Acute acalculous cholecystitis: incidence, risk factors, diagnosis, and outcome. Am Surg 1998; 64:471-475.
PMiD: 9585788
128. Johnson LB. The importance of early diagnosis of acute acalculus cholecystitis. Surg Gynecol Obstet 1987; 164:197-203.
PMID: 3547719
129. Laurila J, Syrjälä H, Laurila PA, et al. Acute acalculous cholecystitis in critically ill patients. Acta Anaesthesiol Scand 2004; 48:986-991.
https://doi.org/10.1111/j.0001-5172.2004.00426.x
PMid:15315616
130. Huffman JL, Schenker S. Acute acalculous cholecystitis: a review. Clin Gastroenterol Hepatol 2010; 8:15-22.
https://doi.org/10.1016/j.cgh.2009.08.034
PMid:19747982
131. McChesney JA, Northup PG, Bickston SJ. Acute acalculous cholecystitis associated with systemic sepsis and visceral arterial hypoperfusion: a case series and review of pathophysiology. Dig Dis Sci 2003; 48:1960-1967.
https://doi.org/10.1023/A:1026118320460
PMid:14627341
132. Taoka H. Experimental study on the pathogenesis of acute acalculous cholecystitis, with special reference to the roles of microcirculatory disturbances, free radicals and membrane-bound phospholipase A2. Gastroenterol Jpn 1991; 26:633-644.
https://doi.org/10.1007/BF02781681
PMid:1752395
133. Lee SP. Pathogenesis of biliary sludge. Hepatology 1990; 12:200S-203S
PMID: 2210650
134. Pisano M, Allievi N, Gurusamy K, et al. 2020 World Society of Emergency Surgery updated guidelines for the diagnosis and treatment of acute calculus cholecystitis. World J Emerg Surg 2020; 15:61.
https://doi.org/10.1186/s13017-020-00336-x
PMid:33153472 PMCid:PMC7643471
135. Treinen C, Lomelin D, Krause C, et al. Acute acalculous cholecystitis in the critically ill: risk factors and surgical strategies. Langenbeck’s Arch Surg 2015; 400:421-427.
https://doi.org/10.1007/s00423-014-1267-6
PMid:25539703
136. Balmadrid B. Recent advances in management of acalculous cholecystitis. F1000Research 2018; 7.
https://doi.org/10.12688/f1000research.14886.1
PMid:30381792 PMCid:PMC6194724
137. Law R, Baron TH. Endoscopic ultrasound-guided gallbladder drainage. Gastrointest Endosc Clin N Am 2018; 28:187-195.
https://doi.org/10.1016/j.giec.2017.11.006
PMid:29519331
138. Kubota K, Abe Y, Inamori M, et al. Percutaneous transhepatic gallbladder stenting for recurrent acute acalculous cholecystitis after failed endoscopic attempt. J Hepatobiliary Pancreat Surg 2005; 12:286-289.
https://doi.org/10.1007/s00534-005-0989-9
PMid:16133694
139. Kjaer DW, Kruse A, Funch-Jensen P. Endoscopic gallbladder drainage of patients with acute cholecystitis. Endoscopy 2007; 39:304-308.
https://doi.org/10.1055/s-2007-966335
PMid:17427067
140. Chang YR, Yun JH, Choi SH, et al. Effect of early enteral nutrition on the incidence of acute acalculous cholecystitis among trauma patients. Asia Pac J Clin Nutr 2020; 29:35-40.
https://doi.org/10.6133/apjcn.202003_29(1).0005
PMID: 32229439