From state-of-the-art ventilation to closed loop ventilation

Andreas Schibler, Matthias van der Staay, Christian Remus

Cite

Schibler A, van der Staay M, Remus C. From state-of-the-art ventilation to closed loop ventilation J Mech Vent 2022; 3(3):92-104

Abstract

Recent emphasis on energy load delivered during each ventilatory breath has opened a new insight to reduce harmful ventilatory induced lung injury, but no robust clinical evidence of patient benefit produced yet.

Closed loop ventilation is a strategy to adjust respiratory support using physiological feedback data obtained for each delivered cycle of respiratory support. Dependent on the model assumption used, closed loop ventilation aims to identify the ideal combination of tidal volume size, reduced driving pressure or respiratory frequency ultimately reducing the energy loading of the lung.

This review aims to discuss the current state-of-the-art ventilation concepts and their integration in closed loop ventilation.

Keywords

Ventilator Induced Lung Injury, Closed loop ventilation, Energy, ASV, AVM-2

References

1. Howell MD, Davis AM. Management of ARDS in adults. JAMA 2018; 319:711-712.
https://doi.org/10.1001/jama.2018.0307
PMid:29466577
2. Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372:747-755.
https://doi.org/10.1056/NEJMsa1410639
PMid:25693014
3. Aoyama H, Pettenuzzo T, Aoyama K, et al. Association of driving pressure with mortality among ventilated patients with Acute Respiratory Distress Syndrome: A systematic review and meta-analysis. Crit Care Med 2018; 46:300-306.
https://doi.org/10.1097/CCM.0000000000002838
PMid:29135500
4. Guerin C, Papazian L, Reignier J, et al. Effect of driving pressure on mortality in ARDS patients during lung protective mechanical ventilation in two randomized controlled trials. Crit Care 2016; 20:384.
https://doi.org/10.1186/s13054-016-1556-2
PMid:27894328 PMCid:PMC5126997
5. Serpa Neto A, Deliberato RO, Johnson AEW, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med 2018; 44:1914-1922.
https://doi.org/10.1007/s00134-018-5375-6
PMid:30291378
6. Coppola S, Caccioppola A, Froio S, et al. Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care 2020; 24:246.
https://doi.org/10.1186/s13054-020-02963-x
PMid:32448389 PMCid:PMC7245621
7. Arnal JM, Wysocki M, Nafati C, et al. Automatic selection of breathing pattern using adaptive support ventilation. Intensive Care Med 2008; 34:75-81.
https://doi.org/10.1007/s00134-007-0847-0
PMid:17846747
8. Paiva M, Verbanck S, van Muylem A. Diffusion-dependent contribution to the slope of the alveolar plateau. Respiration Physiology 1988; 72:257-270.
https://doi.org/10.1016/0034-5687(88)90085-0
9. Verbanck S, Paiva M. Model simulations of gas mixing and ventilation distribution in the human lung. Journal of Applied Physiology 1990; 69:2269-2679.
https://doi.org/10.1152/jappl.1990.69.6.2269
PMid:2077025
10. Schibler A, Yuill M, Parsley C,et al. Regional ventilation distribution in non‐sedated spontaneously breathing newborns and adults is not different. Pediatr Pulmonol 2009; 44:851-858.
https://doi.org/10.1002/ppul.21000
PMid:19672959
11. Schnidrig S, Casaulta C, Schibler A, et al. Influence of end-expiratory level and tidal volume on gravitational ventilation distribution during tidal breathing in healthy adults. European journal of applied physiology 2013; 113:591-598.
https://doi.org/10.1007/s00421-012-2469-7
PMid:22872368
12. von Ungern-Sternberg BS, Regli A, Schibler A, et al. The impact of positive end-expiratory pressure on functional residual capacity and ventilation homogeneity impairment in anesthetized children exposed to high levels of inspired oxygen. Anesth Analg 2007; 104:1364-1368.
https://doi.org/10.1213/01.ane.0000261503.29619.9c
PMid:17513627
13. Schibler A, Henning R. Positive end-expiratory pressure and ventilation inhomogeneity in mechanically ventilated children. Pediatr Crit Care Med 2002; 3(2):124-128.
https://doi.org/10.1097/00130478-200204000-00006
PMid:12780980
14. Almeida-Junior AA, da Silva MTN, Almeida CCB, et al. Relationship between physiologic deadspace/tidal volume ratio and gas exchange in infants with acute bronchiolitis on invasive mechanical ventilation. Pediatr Crit Care Med 2007; 8:372-377.
https://doi.org/10.1097/01.PCC.0000269389.51189.A8
PMid:17545938
15. Gattinoni L, Vagginelli F, Carlesso E, et al. Decrease in PaCO2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med 2003; 31:2727-2733.
https://doi.org/10.1097/01.CCM.0000098032.34052.F9
PMid:14668608
16. Cressoni M, Caironi P, Polli F, et al. Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome. Crit Care Med 2008; 36:669-675.
https://doi.org/10.1097/01.CCM.0000300276.12074.E1
PMid:18091555
17. Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med 2005; 31:776-784.
https://doi.org/10.1007/s00134-005-2627-z
PMid:15812622
18. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338:347-354.
https://doi.org/10.1056/NEJM199802053380602
PMid:9449727
19. Villar J, Kacmarek RM, Perez-Mendez L, et al. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: A randomized, controlled trial. Crit Care Med 2006; 34:1311-1318.
https://doi.org/10.1097/01.CCM.0000215598.84885.01
PMid:16557151
20. Brochard L, Roudot-Thoraval F, Roupie E, et al. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The multicentre trial group on tidal volume reduction in ARDS. Am J Respir Crit Care Med 1998; 158:1831-1838.
https://doi.org/10.1164/ajrccm.158.6.9801044
PMid:9847275
21. Brower R, Thompson BT. Tidal volumes in acute respiratory distress syndrome-one size does not fit all. Crit Care Med 2006; 34:263-264; author reply 4-7.
https://doi.org/10.1097/01.CCM.0000191132.12653.05
PMid:16374199
22. Brower RG, Shanholtz CB, Fessler HE, et al. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 1999; 27:1492-1498.
https://doi.org/10.1097/00003246-199908000-00015
PMid:10470755
23. Acute Respiratory Distress Syndrome N, Brower RG, Matthay MA, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342:1301-1308.
https://doi.org/10.1056/NEJM200005043421801
PMid:10793162
24. Fan E, Del Sorbo L, Goligher EC, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine. Clinical practice guideline: mechanical ventilation in adult patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2017; 195:1253-1263.
https://doi.org/10.1164/rccm.201703-0548ST
PMid:28459336
25. Protti A, Maraffi T, Milesi M, et al. Role of strain rate in the pathogenesis of ventilator-induced lung edema. Crit Care Med 2016; 44:e838-845.
https://doi.org/10.1097/CCM.0000000000001718
PMid:27054894
26. Protti A, Andreis DT, Monti M, et al. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med 2013; 41:1046-1055.
https://doi.org/10.1097/CCM.0b013e31827417a6
PMid:23385096
27. Protti A, Cressoni M, Santini A, et al. Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med 2011; 183:1354-1362.
https://doi.org/10.1164/rccm.201010-1757OC
PMid:21297069
28. Cressoni M, Gotti M, Chiurazzi C, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology 2016; 124:1100-1108.
https://doi.org/10.1097/ALN.0000000000001056
PMid:26872367
29. Aoyama H, Yamada Y, Fan E. The future of driving pressure: a primary goal for mechanical ventilation? J intensive care 2018; 6:64.
https://doi.org/10.1186/s40560-018-0334-4
PMid:30305906 PMCid:PMC6172758
30. Tonna JE, Peltan I, Brown SM, et al; University of Utah Mechanical Power Study Group. Mechanical power and driving pressure as predictors of mortality among patients with ARDS. Intensive Care Med 2020;46: 1941-1943.
https://doi.org/10.1007/s00134-020-06130-2
PMid:32504104 PMCid:PMC7273377
31. Boscolo A, Sella N, Lorenzoni G, et al. Static compliance and driving pressure are associated with ICU mortality in intubated COVID-19 ARDS. Crit Care 2021; 25:263.
https://doi.org/10.1186/s13054-021-03667-6
PMid:34321047 PMCid:PMC8317138
32. van Schelven P, Koopman AA, Burgerhof JGM, et al. Driving pressure is associated with outcome in pediatric acute respiratory failure. Pediatr Crit Care Med 2022; 23:e136-e44.
https://doi.org/10.1097/PCC.0000000000002848
PMid:34669679
33. Williams EC, Motta-Ribeiro GC, Vidal Melo MF. Driving pressure and transpulmonary pressure: how do we guide safe mechanical ventilation? Anesthesiology 2019; 131:155-163.
https://doi.org/10.1097/ALN.0000000000002731
PMid:31094753 PMCid:PMC6639048
34. Kneyber MCJ. Randomized controlled trial of negative pressure ventilation: we first need characterized physiology. Pediatr Crit Care Med 2021; 22(6):e371-e372
https://doi.org/10.1097/PCC.0000000000002742
PMid:33899803
35. Kneyber MCJ. Driving pressure and mechanical power: The return of physiology in pediatric mechanical ventilation. Pediatr Crit Care Med 2021; 22:927-929.
https://doi.org/10.1097/PCC.0000000000002829
PMid:34605787
36. Marini JJ, Gattinoni L, Rocco PR. Estimating the damaging power of high-stress ventilation. Respir Care 2020; 65:1046-1052.
https://doi.org/10.4187/respcare.07860
PMid:32606007
37. Marini JJ, Rocco PRM. Which component of mechanical power is most important in causing VILI? Crit Care 2020; 24:39.
https://doi.org/10.1186/s13054-020-2747-4
PMid:32024538 PMCid:PMC7003372
38. Marini JJ, Rocco PRM, Gattinoni L. Static and dynamic contributors to ventilator-induced lung injury in clinical practice. Pressure, energy, and power. Am J Respir Crit Care Med 2020; 201:767-774.
https://doi.org/10.1164/rccm.201908-1545CI
PMid:31665612 PMCid:PMC7124710
39. Costa ELV, Slutsky AS, Brochard LJ, et al. Ventilatory variables and mechanical power in patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2021; 204:303-311.
https://doi.org/10.1164/rccm.202009-3467OC
PMid:33784486
40. Marini JJ. How I optimize power to avoid VILI. Crit Care 2019; 23:326.
https://doi.org/10.1186/s13054-019-2638-8
PMid:31639025 PMCid:PMC6805433
41. Fan E, Brodie D, Slutsky AS. Acute Respiratory Distress Syndrome: Advances in diagnosis and treatment. JAMA 2018; 319:698-710.
https://doi.org/10.1001/jama.2017.21907
PMid:29466596
42. Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med 2016;42: 1567-75.
https://doi.org/10.1007/s00134-016-4505-2
PMid:27620287
43. Marini JJ, Crooke PS, Gattinoni L. Intra-cycle power: is the flow profile a neglected component of ung protection? Intensive Care Med 2021;47: 609-611.
https://doi.org/10.1007/s00134-021-06375-5
PMid:33797574 PMCid:PMC8017116
44. Duan EH, Adhikari NKJ, D’Aragon F, et al. Management of acute respiratory distress syndrome and refractory hypoxemia. A multicenter observational study. Ann Am Thorac Soc 2017; 14:1818-1826.
https://doi.org/10.1513/AnnalsATS.201612-1042OC
PMid:28910146
45. Hewlett AM, Platt AS, Terry VG. Mandatory minute volume. A new concept in weaning from mechanical ventilation. Anaesthesia 1977; 32:163-169.
https://doi.org/10.1111/j.1365-2044.1977.tb11588.x
PMid:322535
46. Brunner JX, Iotti GA. Adaptive Support Ventilation (ASV). Minerva Anestesiol 2002; 68:365-368.
PMID: 12029247
47. Campbell RS, Branson RD, Johannigman JA. Adaptive support ventilation. Respir Care Clin N Am 2001; 7:425-440.
https://doi.org/10.1016/S1078-5337(05)70049-6
48. Otis AB. The work of breathing. Physiol Rev 1954; 34:449-458.
https://doi.org/10.1152/physrev.1954.34.3.449
PMid:13185751
49. Wysocki M, Jouvet P, Jaber S. Closed loop mechanical ventilation. J Clin Monit Comput 2014; 28:49-56.
https://doi.org/10.1007/s10877-013-9465-2
PMid:23564277
50. Becher T, van der Staay M, Schadler D, et al. Calculation of mechanical power for pressure-controlled ventilation. Intensive Care Med 2019; 45:1321-1323.
https://doi.org/10.1007/s00134-019-05636-8
PMid:31101961
51. van der Staay M, Chatburn RL. Advanced modes of mechanical ventilation and optimal targeting schemes. Intensive Care Med Exp 2018; 6:30.
https://doi.org/10.1186/s40635-018-0195-0
PMid:30136011 PMCid:PMC6104409
52. ARDS Network. http://www.ardsnetorg/files/ventilator_protocol_2008-07pdf. Accessed August 2022.
53. Gruber PC, Gomersall CD, Leung P, et al. Randomized controlled trial comparing adaptive-support ventilation with pressure-regulated volume-controlled ventilation with automode in weaning patients after cardiac surgery. Anesthesiology 2008; 109:81-87.
https://doi.org/10.1097/ALN.0b013e31817881fc
PMid:18580176
54. Iotti GA, Polito A, Belliato M, et al. Adaptive support ventilation versus conventional ventilation for total ventilatory support in acute respiratory failure. Intensive Care Med 2010; 36:1371-1379.
https://doi.org/10.1007/s00134-010-1917-2
PMid:20502870
55. Arnal JM, Garnero A, Novonti D, et al. Feasibility study on full closed-loop control ventilation (IntelliVent-ASV) in ICU patients with acute respiratory failure: a prospective observational comparative study. Crit Care 2013; 17:R196.
https://doi.org/10.1186/cc12890
PMid:24025234 PMCid:PMC4056360
56. Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung 2020; 49:427-434.
https://doi.org/10.1016/j.hrtlng.2019.11.001
PMid:31733881
57. Zhang Z, Zheng B, Liu N, et al. Mechanical power normalized to predicted body weight as a predictor of mortality in patients with acute respiratory distress syndrome. Intensive Care Med 2019; 45:856-864.
https://doi.org/10.1007/s00134-019-05627-9
PMid:31062050