Unusual paraseptal emphysema as the primary changes in computerized tomography scan of a COVID-19 patient. Case report

Dan Bendtsen, Takkin Lo

Cite

Bendsten D, Lo T. Unusual paraseptal emphysema as the primary changes in computerized tomography scan of a COVID-19 patient. J Mech Vent 2020; 1(1):14-18.

Abstract

Covid-19 pandemic has infected more than 20 million people worldwide and claimed more than 750,000 lives so far. Given that this disease is new, the long-term lung effects for survivors especially of severe cases are unknown.

Most radiographic changes compared to those commonly seen in Acute Respiratory Distress Syndrome (ARDS), manifested as groundglass opacities or diffuse interstitial/alveolar changes.

We present a case of severe acute respiratory failure secondary to COVID-19 requiring prolonged mechanical ventilation and hospitalization with subsequent lung damage and unusual formation of extensive paraseptal emphysematous changes which predominantly affect the lungs apices with subsequent spontaneous pneumothorax.

Currently, the long-term impacts on survivors of severe COVID-19 infections are unknown.  Future long-term follow-up studies will likely confirm a significant burden and many long-lasting disabilities to the society.

Keywords

COVID-19, VILI, Paraseptal Emphysema, Pulmonary fibrosis, Pneumothorax

References

1. Komorowski M, Aberegg SK. Using applied lung physiology to understand COVID-19 patterns. Br J Anaesth 2020 [published online ahead of print, 2020 May 26].
https://doi.org/10.1016/j.bja.2020.05.019
PMid:32536444 PMCid:PMC7250770
2. Johns Hopkins Coronavirus Resource Center. https://coronavirus.jhu.edu/. Accessed 2020 Aug 13.
3. Jun Zheng. SARS-CoV-2: an Emerging Coronavirus that causes a Global Threat. Int J Biol Sci 2020; 16(10):1678-1685.
https://doi.org/10.7150/ijbs.45053
PMid:32226285 PMCid:PMC7098030
4. Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020; 581:221-224.
https://doi.org/10.1038/s41586-020-2179-y
PMid:32225175 PMCid:PMC7328981
5. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8:420-422.
https://doi.org/10.1016/S2213-2600(20)30076-X
6. Ackermann M, Verleden SE, Kuehnel M, et al.Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med 2020; 383:120-128.
https://doi.org/10.1056/NEJMoa2015432
PMid:32437596 PMCid:PMC7412750
7. Adams HJA, Kwee TC, Yakar D, et al. Chest CT Imaging Signature of COVID-19 Infection. In Pursuit of the Scientific Evidence. Chest 2020; 158(5):1885-1895. 
https://doi.org/10.1016/j.chest.2020.06.025
PMID: 32592709  PMCID: PMC7314684
8. Adams HJA, Kwee TC, Yakar D, et al. Systematic Review and Meta-Analysis on the Value of Chest CT in the Diagnosis of Coronavirus Disease (COVID-19). Am J Roentgenol. 2020;1-9.[published online ahead of print, 2020 Jun 1]
https://doi.org/10.2214/AJR.20.23391
PMid:32478562
9. Burnham EL, Janssen WJ, Riches DW, et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur Respir J 2014; 43(1):276-285.
https://doi.org/10.1183/09031936.00196412
PMid:23520315 PMCid:PMC4015132
10. Zhang P, Li J, Liu H, et al. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: a 15-year follow-up from a prospective cohort study. Bone Research 2020; 8:8.
https://doi.org/10.1038/s41413-020-0084-5
PMid:32128276 PMCid:PMC7018717
11. Das KM, Lee EY, Singh R, et al. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J Radiol Imaging 2017; 27: 342-349.
https://doi.org/10.4103/ijri.IJRI_469_16
PMid:29089687 PMCid:PMC5644332
12. Spagnolo P, Balestro E, Aliberti S, et al. Pulmonary fibrosis secondary to COVID-19: a call to arms? Lancet Respir Med 2020; 8(8):750-752.
https://doi.org/10.1016/S2213-2600(20)30222-8
13. Delpino MV, Quarleri J. SARS-CoV-2 Pathogenesis: Imbalance in the Renin-Angiotensin System Favors Lung Fibrosis Front Cell Infect Microbiol 2020; 10:340-344.
https://doi.org/10.3389/fcimb.2020.00340
PMid:32596170 PMCid:PMC7303284
14. Hu HH, Chen DQ, Want YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact 2018; 292(8):76-83.
https://doi.org/10.1016/j.cbi.2018.07.008
PMid:30017632
15. Cabrera-Benitez NE, Laffey JG, Parotto M, et al. Mechanical Ventilation-associated Lung Fibrosis in Acute Respiratory Distress Syndrome A Significant Contributor to Poor Outcome. Anesthesiology 2014; 121(1):189-198.
https://doi.org/10.1097/ALN.0000000000000264
PMid:24732023 PMCid:PMC4991945
16. Slutsky AS, Ranieri VM.Ventilator-induced lung injury. N Engl J Med 2013; 369(22):2126-2136.
https://doi.org/10.1056/NEJMra1208707
PMid:24283226
17. Determann RM , Millo JL, Gibot S, et al Serial changes in soluble triggering receptor expressed on myeloid cells in the lung during development of ventilator-associated pneumonia. Intensive Care Med 2005; 31(11):1495-1500.
https://doi.org/10.1007/s00134-005-2818-7
PMid:16195904
18. Ucpinar BA, Sahin C, Yanc U. Spontaneous pneumothorax and subcutaneous emphysema in COVID-19 patient: Case Report. J Infect Public Health 2020; 13(6):887-889.
https://doi.org/10.1016/j.jiph.2020.05.012
PMid:32475804 PMCid:PMC7247978
19. Poggiali E, Vercelli A, Iannicelli T, et al. COVID-19, Chronic Obstructive Pulmonary Disease and Pneumomothorax: A frightening Triad. Eur J Case Rep Intern Med 2020; 7(7):001742.
20. Chiumello D, Coppola S, Froio S, et al. What’s Next After ARDS: Long-Term Outcomes. Respir Care 2016; 61(5):689-699.
https://doi.org/10.4187/respcare.04644
PMid:27121623
21. Sasidhar M, Chatburn RL. Tidal Volume Variability During Airway Pressure Release Ventilation: Case Summary and Theoretical Analysis. Respir Care 2012; 57(8):1325-1333.
https://doi.org/10.4187/respcare.01394
PMid:22348242