Alveolar mechanics: A new concept in respiratory monitoring

Ehab G. Daoud, Claudio Luciano Franck

Cite

Daoud EG, Franck CL. Alveolar mechanics: A new concept in respiratory monitoring. J Mech Vent 2022; 3(4):178-188.

Abstract

A detailed understanding of respiratory mechanics during mechanical ventilation aids diagnostic accuracy and facilitates close monitoring of patient progress, allowing individualized ventilator adjustments aimed at minimizing ventilator induced lung injury. Respiratory mechanics can be described in terms of total respiratory, lung, and chest wall components and include compliance, resistance and are dependent on tidal volume, airway pressures, and flow for calculation. The interplay between the respiratory mechanics and ventilator delivered volume, flow, and pressure have an important role in the development of ventilator induced lung injury.

The knowledge of alveolar dynamics and mechanics in the critically ill are lacking with much information originating mainly from bench and animal models of healthy and injured lungs.

In this article we introduce the concept of alveolar compliance, resistance that depend on measuring the trans-alveolar pressure using esophageal balloon manometry and alveolar tidal volume using volumetric capnometry.

This may have multiple implications in the understanding of components of ventilator induced lung injury specifically alveolar stress, strain, and mechanical power.

Further studies are warranted to further understanding the monitoring and usefulness of alveolar mechanics.

Keywords

Alveolar compliance and resistance, alveolar tidal volume, trans-alveolar pressure, alveolar stress and strain, alveolar mechanical power

References

1. Henderson WR, Sheel AW. Pulmonary mechanics during mechanical ventilation. Respir Physiol Neurobiol 2012; 180(2-3):162-172.
https://doi.org/10.1016/j.resp.2011.11.014
PMid:22154694
2. Gertler R. Respiratory Mechanics. Anesthesiol Clin 2021; 39(3):415-440.
https://doi.org/10.1016/j.anclin.2021.04.003
PMid:34392877 PMCid:PMC8360707
3. Daoud EG, Shimabukuro R. Mechanical ventilation for the non-critical care trained practitioner. Part 1. J Mech Vent 2020; 1(2):39-51.
https://doi.org/10.53097/JMV.10011
4. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013; 369:2126-2136.
https://doi.org/10.1056/NEJMra1208707
PMid:24283226
5. Uhlig S. Ventilation-induced lung injury and mechanotransduction: stretching it too far? Am J Phys Lung Cell Mol Phys 2002; 282:L892-L896.
https://doi.org/10.1152/ajplung.00124.2001
PMid:11943651
6. Marini JJ. Dissipation of energy during the respiratory cycle: conditional importance of ergotrauma to structural lung damage. Curr Opin Crit Care 2018; 24:16-22.
https://doi.org/10.1097/MCC.0000000000000470
PMid:29176330
7. Carney D, DiRocco J, Nieman G. Dynamic alveolar mechanics and ventilator-induced lung injury. Crit Care Med 2005; 33(3 Suppl):S122-128.
https://doi.org/10.1097/01.CCM.0000155928.95341.BC
PMid:15753717
8. Grune J, Tabuchi A, Kuebler WM. Alveolar dynamics during mechanical ventilation in the healthy and injured lung. Intensive Care Med Exp 2019; 7(Suppl 1):34.
https://doi.org/10.1186/s40635-019-0226-5
PMid:31346797 PMCid:PMC6658629
9. Gattinoni L, Caironi P, Pelosi P, et al. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 2001; 164:1701-1711.
https://doi.org/10.1164/ajrccm.164.9.2103121
PMid:11719313
10. Simonpietri M, Shokry M, Daoud EG. Electrical Impedance Tomography: the future of mechanical ventilation? J Mech Vent 2021; 2(2):64-70.
https://doi.org/10.53097/JMV.10024
11. Akoumianaki E, Maggiore SM, Valenza F. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med 2014; 189(5):520-531.
https://doi.org/10.1164/rccm.201312-2193CI
PMid:24467647
12. Chatburn RL, Daoud EG. Ventilation in Kacmarek, Robert M. et al. Egan’s Fundamentals of Respiratory Care. Ed. Robert M. Kacmarek et al. Eleventh edition. St. Louis, Missouri: Elsevier, 2017.
13. Shokry M, Yamasaki K, Daoud EG. Can you calculate the total respiratory, lung, and chest wall respiratory mechanics? J Mech Vent 2020; 1(1):24-25.
https://doi.org/10.53097/JMV.10007
14. Robertson HT. Dead space: the physiology of wasted ventilation. Eur Respir J 2015; 45(6):1704-16.
https://doi.org/10.1183/09031936.00137614
PMid:25395032
15. Quinn M, St Lucia K, Rizzo A. Anatomy, Anatomic Dead Space. [Updated 2022 Feb 2]. In: StatPearls [Internet]. Treasure Island (FL): Available from: https://www.ncbi.nlm.nih.gov/books/NBK442016/
16. López-Aguilar J, Magrans R, Blanch L. Dead space in ARDS: Die hard. Respir Care 2017; 62(10):1372-1374.
https://doi.org/10.4187/respcare.05842
PMid:28924024
17. Ferluga M, Lucangelo U, Blanch L. Dead space in acute respiratory distress syndrome. Ann Transl Med 2018; 6(19):388.
https://doi.org/10.21037/atm.2018.09.46
PMid:30460262 PMCid:PMC6212367
18. Murias G, Blanch L, Lucangelo U. The physiology of ventilation. Respir Care 2014; 59(11):1795-1807.
https://doi.org/10.4187/respcare.03377
PMid:25316888
19. Voumetric capnometry. https: https://www.hamilton-medical.com/en_US/Landing-pages/Volumetric-capnography-ebook.html?
20. Verscheure S, Massion PB, Verschuren F, et al. Volumetric capnography: lessons from the past and current clinical applications. Crit Care 2016; 20:184.
https://doi.org/10.1186/s13054-016-1377-3
PMid:27334879 PMCid:PMC4918076
21. Williams EC, Motta-Ribeiro GC, Vidal Melo MF. Driving pressure and transpulmonary pressure: how do we guide safe mechanical ventilation? Anesthesiology 2019; 131(1):155-163.
https://doi.org/10.1097/ALN.0000000000002731
PMid:31094753 PMCid:PMC6639048
22. Paiva M. Gas transport in the human lung. Journal of Applied Physiology 1973; 35 (3):401-410
https://doi.org/10.1152/jappl.1973.35.3.401
PMid:4732334
23. Schibler A, van der Staay M, Remus C. From state-of-the-art ventilation to closed loop ventilation J Mech Vent 2022; 3(3):92-104.
https://doi.org/10.53097/JMV.10054
24. Paiva M, Verbanck S, van Muylem A. Diffusion-dependent contribution to the slope of the alveolar plateau. Respiration Physiology 1988; 72:257-270.
https://doi.org/10.1016/0034-5687(88)90085-0
PMid:3406549
25. Verbanck S, Paiva M. Model simulations of gas mixing and ventilation distribution in the human lung. Journal of Applied Physiology 1990; 69:2269-2679.
https://doi.org/10.1152/jappl.1990.69.6.2269
PMid:2077025
26. Gil J, Bachofen H, Gehr P, et al. Alveolar volume-surface area relation in air- and saline-filled lungs fixed by vascular perfusion. J Appl Physiol Respir Environ Exerc Physiol 1979; 47:990-1001.
https://doi.org/10.1152/jappl.1979.47.5.990
PMid:511725
27. Mertens M, Tabuchi A, Meissner S et al Alveolar dynamics in acute lung injury: heterogeneous distension rather than cyclic opening and collapse. Crit Care Med 2009; 37:2604-2611.
https://doi.org/10.1097/CCM.0b013e3181a5544d
PMid:19623041
28. Clements JA, Hustead RF, Johnson RF, et al. Pulmonary surface tension and alveolar stability. J Appl Physiol 1961; 16(3):444-450.
https://doi.org/10.1152/jappl.1961.16.3.444
PMid:13694048
29. Enokidani Y, Uchiyama A, Yoshida T, et al. Effects of ventilatory settings on pendelluft phenomenon during mechanical ventilation. Respir Care 2021; 66(1):1-10.
https://doi.org/10.4187/respcare.07880
PMid:32900913
30. Parra SC, Gaddy LR, Takaro T. Ultrastructural studies of canine interalveolar pores (of Kohn). Lab Invest 1978; 38(1):8-13.
31. Introduction to pulmonary structure & mechanics. In: Barrett KE, Barman SM, Boitano S, Reckelhoff JF. eds. Ganong’s Medical Physiology Examination & Board Review. McGraw Hill; 2017.
32. Rocco PRM, Silva PL, Samary CS, et al. Elastic power but not driving power is the key promoter of ventilator-induced lung injury in experimental acute respiratory distress syndrome. Crit Care 2020; 24(284):1-8.
https://doi.org/10.1186/s13054-020-03011-4
PMid:32493362 PMCid:PMC7271482
33. Hubmayr RD, Kallet RH. Understanding pulmonary stress-strain relationships in severe ARDS and its implications for designing a safer approach to setting the ventilator. Respir Care 2018; 63(2):219-226.
https://doi.org/10.4187/respcare.05900
PMid:29367383
34. Blankman P, Hasan D, Bikker IG, Gommers D. Lung stress and strain calculations in mechanically ventilated patients in the intensive care unit. Acta Anaesthesiol Scand 2016; 60(1):69-78.
https://doi.org/10.1111/aas.12589
PMid:26192561 PMCid:PMC6191648
35. Brewer LM, Orr JA, Sherman MR, et al. Measurement of functional residual capacity by modified multiple breath nitrogen washout for spontaneously breathing and mechanically ventilated patients. Br J Anaesth 2011; 107(5):796-805.
https://doi.org/10.1093/bja/aer220
PMid:21752798
36. Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care 2019; 13;9(1):69.
https://doi.org/10.1186/s13613-019-0540-9
PMid:31197492 PMCid:PMC6565761
37. Blankman P, Shono A, Hermans BJ, et al. Detection of optimal PEEP for equal distribution of tidal volume by volumetric capnography and electrical impedance tomography during decreasing levels of PEEP in post cardiac-surgery patients. Br J Anaesth 2016; 116(6):862-869.
https://doi.org/10.1093/bja/aew116
PMid:27199318 PMCid:PMC4872863
38. Tusman G, Gogniat E, Madorno M, et al. Effect of PEEP on dead space in an experimental model of ARDS. Respir Care 2020; 65(1):11-20.
https://doi.org/10.4187/respcare.06843
PMid:31615922
39. Yeo J, Shah P, Koichi K, et al. Mechanical power in AVM-2 versus conventional ventilation modes in in various ARDS lung models: A bench study. J Mech Vent 2022; 3(3):110-122.
https://doi.org/10.53097/JMV.10056
40. Schibler A, van der Staay M, Remus C. From state-of-the-art ventilation to closed loop ventilation J Mech Vent 2022; 3(3):92-104.
https://doi.org/10.53097/JMV.10054
41. Abbasi S, Sivieri EM, Bhutani VK. Evaluation of pulmonary function in the neonate, fetal and neonatal physiology (Third Edition), Saunders WB2004 (90): 919-926.
https://doi.org/10.1016/B978-0-7216-9654-6.50093-X
42. Crooke PS, Gattinoni L, Michalik M, et al. Intracycle power distribution in a heterogeneous multi-compartmental mathematical model: possible links to strain and VILI. Intensive Care Med Exp 2022; 10(1):21.
https://doi.org/10.1186/s40635-022-00447-6
PMid:35641652 PMCid:PMC9156592
43. Guerin C, Richard JC. Measurement of respiratory system resistance during mechanical ventilation. Intensive Care Med 2007; 33:1046-1049.
https://doi.org/10.1007/s00134-007-0652-9
PMid:17457568
44. Paudel R, Trinkle CA, Waters CM, et al. Mechanical power: A New concept in mechanical ventilation. Am J Med Sci 2021; 362(6):537-545.
https://doi.org/10.1016/j.amjms.2021.09.004
PMid:34597688 PMCid:PMC8688297
45. Tonna JE, Peltan I, Brown SM, et al; University of Utah Mechanical Power Study Group. Mechanical power and driving pressure as predictors of mortality among patients with ARDS. Intensive Care Med 2020; 46(10):1941-1943.
https://doi.org/10.1007/s00134-020-06130-2
PMid:32504104 PMCid:PMC7273377
46. Coppola S, Caccioppola A, Froio S, et al. Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care 2020; 24(1):246.
https://doi.org/10.1186/s13054-020-02963-x
PMid:32448389 PMCid:PMC7245621
47. Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med 2016; 42(10):1567-1575.
https://doi.org/10.1007/s00134-016-4505-2
PMid:27620287
48. Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung 2020; 49(4):427-434.
https://doi.org/10.1016/j.hrtlng.2019.11.001
PMid:31733881
49. Pham T, Telias I, Beitler JR. Esophageal manometry. Respir Care 2020; 65(6):772-792.
https://doi.org/10.4187/respcare.07425
PMid:32457170 PMCid:PMC7362579
50. Bellani G, Laffey JG, Pham T, et al; LUNG SAFE Investigators; ESICM Trials Group. Epidemiology, patterns of care, and mortality for patients with Acute Respiratory Distress Syndrome in intensive care units in 50 countries. JAMA 2016; 315(8):788-800.
https://doi.org/10.1001/jama.2016.0291
PMid:26903337
51. Kreit JW. Volume capnography in the intensive care unit: potential clinical applications. Ann Am Thorac Soc 2019; 16(4):409-420.
https://doi.org/10.1513/AnnalsATS.201807-502CME
PMid:30742490
52. Walsh BK, Crotwell DN, Restrepo RD. Capnography/Capnometry during mechanical ventilation: 2011. Respir Care 2011; 56(4):503-509.
https://doi.org/10.4187/respcare.01175
PMid:21255512
53. Hurtado DE, Erranz B, Lillo F, et al. Progression of regional lung strain and heterogeneity in lung injury: assessing the evolution under spontaneous breathing and mechanical ventilation. Ann. Intensive Care 2020; 10:107.
https://doi.org/10.1186/s13613-020-00725-0
PMid:32761387 PMCid:PMC7407426
54. Harris RS. Pressure-volume curves of the respiratory system. Respir Care 2005; 50(1):78-98.
55. Concha F, Sarabia-Vallejos M, Hurtado DE. Micromechanical model of lung parenchyma hyperelasticity, Journal of the Mechanics and Physics of Solids 2018; 112:126-144.
https://doi.org/10.1016/j.jmps.2017.11.021