Estimating actual inspiratory muscle pressure from airway occlusion pressure at 100 msec

Natsumi T. Hamahata, Ryota Sato, Kimiyo Yamasaki, Sophie Rodrigues Pereira, Ehab G. Daoud

Cite

Hamahata NT, Sato R, Yamasaki K, et al. Estimating actual inspiratory muscle pressure from airway occlusion pressure at 100 msec. J Mech Vent 2020; 1(1):8-13.

Abstract

Background

Quantification of the patient’s respiratory effort during mechanical ventilation is very important and calculating the actual muscle pressure (Pmus) during mechanical ventilation is a cumbersome task and usually requires an esophageal balloon manometry. Airway occlusion pressure at 100 milliseconds (P0.1) can easily be obtained non-invasively. There has been no study investigating the association between Pmus and P0.1. Therefore, we aimed to investigate whether P0.1 correlate to Pmus and can be used to estimate actual Pmus

Materials and Methods

A bench study using lung simulator (ASL 5000) to simulate an active breathing patient with Pmus from 1 to 30 cmH2O by increments of 1 was conducted. Twenty active breaths were measured in each Pmus. The clinical scenario was constructed as a normal lung with a fixed setting of compliances of 60 mL/cmH2O and resistances of 10 cmH2O/l/sec. All experiments were conducted using the pressure support ventilation mode (PSV) on a Hamilton-G5 ventilator (Hamilton Medical AG, Switzerland), Puritan Bennett 840TM (Covidien-Nellcor, CA) and Avea (CareFusion, CA).

Main results

There was significant correlation between P 0.1 and Pmus (correlation coefficient = – 0.992, 95% CI: -0.995 to -0.988, P-value<0.001). The equation was calculated as follows: Pmus = -2.99 x (P0.1) + 0.53

Conclusion

Estimation of Pmus using P 0.1 as a substitute is feasible, available, and reliable. Estimation of Pmus has multiple implications, especially in weaning of mechanical ventilation, adjusting ventilator support, and calculating respiratory mechanics during invasive mechanical ventilation.

Keywords

P 0.1, Inspiratory occlusion pressure, WOB, Esophageal balloon, mechanical ventilators, respiratory failure

References

1. Tobin MJ. Principles And Practice of Mechanical Ventilation, Third Edition. McGraw Hill Professional; 2012.
2. Jubran A, Tobin MJ. Pathophysiologic basis of acute respiratory distress in patients who fail a trial of weaning from mechanical ventilation. Am J Respir Crit Care Med 1997; 155(3):906-915.
https://doi.org/10.1164/ajrccm.155.3.9117025
PMid:9117025
3. Petrof BJ, Jaber S, Matecki S. Ventilator-induced diaphragmatic dysfunction. Curr Opin Crit Care 2010; 16(1):19-25.
https://doi.org/10.1097/MCC.0b013e328334b166
PMid:19935062
4. Kacmarek RM, Stoller JK, Heuer Al. Egan’s Fundamentals of Respiratory Care. Elsevier Health Sciences; 2016.
5. Boles J-M, Bion J, Connors A, et al. Weaning from mechanical ventilation. Eur Respir J 2007; 29:1033-1056.
https://doi.org/10.1183/09031936.00010206
PMid:17470624
6. Daoud E, Katigbackk R, Ottochian M. Accuracy of the ventilator automated displayed respiratory mechanics in passive and active breathing conditions. Bench study. Respir Care 2019; 64(12):1555-1560.
https://doi.org/10.4187/respcare.06422
PMid:31311851
7. Akoumianaki E, Maggiore SM, Valenza F, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med 2014; 189(5):520-531.
https://doi.org/10.1164/rccm.201312-2193CI
PMid:24467647
8. Banner MJ, Jaeger MJ, Kirby RR. Components of the work of breathing and implications for monitoring ventilator-dependent patients. Crit Care Med 1994; 22(3):515-523.
https://doi.org/10.1097/00003246-199403000-00024
PMid:8125004
9. ASL 5000 Operating Manual SW 3.1.14 – IngMar Medical. Accessed 6/2020 at www.ingmarmed.com
10. Colombo D, Cammarota G, Alemani M, et al. Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med 2011; 39(11):2452-2457.
https://doi.org/10.1097/CCM.0b013e318225753c
PMid:21705886
11. Sharshar T, Desmarais G, Louis B, et al. Transdiaphragmatic pressure control of airway pressure support in healthy subjects. Am J Respir Crit Care Med 2003; 168(7):760-769.
https://doi.org/10.1164/rccm.200203-241OC
PMid:12773333
12. Bellani G, Mauri T, Coppadoro A, et al. Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm. Crit Care Med 2013; 41(6):1483-1491.
https://doi.org/10.1097/CCM.0b013e31827caba0
PMid:23478659
13. Bellani G, Pesenti A. Assessing effort and work of breathing. Curr Opin Crit Care 2014; 20(3):352-358.
https://doi.org/10.1097/MCC.0000000000000089
PMid:24722059
14. Hamahata N, Daoud E. Estimating actual muscle pressure from airway occlusion pressure at 100 msec. chest 2019; 156(4):A1079.
https://doi.org/10.1016/j.chest.2019.08.994
15. Whitelaw WA, Derenne JP. Airway occlusion pressure. J Appl Physiol 1993; 74(4):1475-1483.
https://doi.org/10.1152/jappl.1993.74.4.1475
PMid:8514660
16. Mauri T, Yoshida T, Bellani G, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med 2016; 42(9):1360-1373.
https://doi.org/10.1007/s00134-016-4400-x
PMid:27334266
17. Telias I, Damiani F, Brochard L. The airway occlusion pressure (P0.1) to monitor respiratory drive during mechanical ventilation: increasing awareness of a not-so-new problem. Intensive Care Med 2018; 44(9):1532-1535.
https://doi.org/10.1007/s00134-018-5045-8
PMid:29350241
18. Iotti GA, (null) AB, 1999. Measurements of respiratory mechanics during mechanical ventilation. hamiltonmedical.nl
19. Arnal J-M, Garnero A, Saoli M, et al. Parameters for simulation of adult subjects during mechanical ventilation. Respir Care 2018; 63(2):158-168.
https://doi.org/10.4187/respcare.05775
PMid:29042486
20. Uchiyama A, Imanaka H, Taenaka N. Relationship between work of breathing provided by a ventilator and patients’ inspiratory drive during pressure support ventilation; effects of inspiratory rise time. Anaesth Intensive Care 2001; 29(4):349-358.
https://doi.org/10.1177/0310057X0102900404
PMid:11512644
21. Vassilakopoulos T, Petrof BJ. Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 2004; 169(3):336-341.
https://doi.org/10.1164/rccm.200304-489CP
PMid:14739134
22. Supinski GS, Morris PE , Dhar S, et al. Diaphragm dysfunction in critical illness. CHEST 2018; 153(4):1040-1051.
https://doi.org/10.1016/j.chest.2017.08.1157
PMid:28887062 PMCid:PMC6026291
23. Yoshida T, Fujino Y, Amato MBP, Kavanagh BP. Fifty years of research in ARDS. Spontaneous breathing during mechanical ventilation risks, mechanisms, and management. Am J Respir Crit Care Med 2017; 195(8):985-992.
https://doi.org/10.1164/rccm.201604-0748CP
PMid:27786562
24. Gay PC, Hess DR, Hill NS. Noninvasive proportional assist ventilation for acute respiratory insufficiency. Comparison with pressure support ventilation. Am J Respir Crit Care Med 2001; 164(9):1606-1611.
https://doi.org/10.1164/ajrccm.164.9.2011119
PMid:11719297
25. Carteaux G, Córdoba-Izquierdo A, Lyazidi A, et al. Comparison between neurally adjusted ventilatory assist and pressure support ventilation levels in terms of respiratory effort. Crit Care Med 2016; 44(3):503-511.
https://doi.org/10.1097/CCM.0000000000001418
PMid:26540399
26. Carteaux G, Mancebo J, Mercat A, et al. Bedside adjustment of proportional assist ventilation to target a predefined range of respiratory effort. Crit Care Med 2013; 41(9):2125-2132.
https://doi.org/10.1097/CCM.0b013e31828a42e5
PMid:23787397
27. Kondili E, Alexopoulou C, Xirouchaki N, Vaporidi K, Georgopoulos D. Estimation of inspiratory muscle pressure in critically ill patients. Intensive Care Med 2010; 36(4):648-655.
https://doi.org/10.1007/s00134-010-1753-4
PMid:20107765
28. Umbrello M, Chiumello D. Interpretation of the transpulmonary pressure in the critically ill patient. Ann Transl Med 2018; 6(19):383-333.
https://doi.org/10.21037/atm.2018.05.31
PMid:30460257 PMCid:PMC6212359
29. D MBM, Mukai DS, Russell JE, Eugene M Spiritus M D FCCP, Archie F Wilson M D PDFCCP. A New Method for Measurement of Airway Occlusion Pressure. CHEST 2015; 98(2):421-427.
https://doi.org/10.1378/chest.98.2.421
PMid:2376174
30. Mancebo J, Albaladejo P, Touchard D, et al. Airway Occlusion Pressure to Titrate Positive End-expiratory Pressure in Patients with Dynamic Hyperinflation. Anesthes 2000; 93(1):81-90.
https://doi.org/10.1097/00000542-200007000-00016
PMid:10861149
31. Chatburn RL. Simulation-Based Evaluation of Mechanical Ventilators. Respiratory Care 2018; 63(7):936-940.
https://doi.org/10.4187/respcare.06267
PMid:29941669
33. Beloncle F, Piquilloud L, Olivier PY, et al. Accuracy of P0.1 measurements performed by ICU ventilators: a bench study. Ann Intensive Care 2019; 9(1):104.
https://doi.org/10.1186/s13613-019-0576-x
PMid:31520230 PMCid:PMC6744533