A pilot study to evaluate the safety and efficacy of automated mechanical Respiratory aid device “RespirAID R20” in post operative care patients

Gautham Pasupuleti, Meghna Mukund, Sharon George, Srimathi Bai KM

Cite

Pasupuleti G, Mukund M, George S, Bai S. A pilot study to evaluate the safety and efficacy of automated mechanical respiratory aid device “RespirAID R20” in post operative care patients. J Mech Vent 2022; 3(4):170-176.

Abstract

Background

High burden of morbidity and mortality due to respiratory illnesses was witnessed during the COVID-19 pandemic. We developed a portable automated mechanical respiratory assist device (RespirAID R20) that delivers Intermittent Positive Pressure Ventilation by mechanically compressing a Bag Valve Mask. The objective of the study is to evaluate the safety and efficacy of the RespirAID R20, a mechanical ventilation device in post-operative care patients.

Method

This pilot study enrolled five subjects at Yenepoya Medical College Hospital, India. Post-operative subjects were transferred from the Mindray Synovent E3 (standard ventilator) to the RespirAID R20 for 3 hours. Ventilator and physiologic parameters were recorded and compared.

Result

All patients maintained normal blood pressure, heart rate, and heart rhythm. The delivered mean tidal volume (VT) and peak inspiratory pressure (PIP) was 419.64 +/- 11 ml and 20 +/- 2 cmH2O, which remained within the initial set range of 428 +/- 12 ml and 24 +/- 2 cmH2O throughout the study duration. Arterial blood gas (ABG) parameters during RespirAID R20, except PaO2, were within the normal range. PaO2 levels were greater than 300 mm Hg during the first four hours (323 +/- 163 mmHg and 344 +/- 97 mmHg).

Conclusion

The findings of this study suggests that RespirAID R20 may be an alternative device in providing respiratory assistance to sedated and intubated adult patients in the postoperative period. Additional studies are required to evaluate other possible applications of the RespirAID R20.

Keywords

RespirAID R20, ABG parameters, mechanical ventilation, respiratory assist

1. Basnayake TL, Morgan LC, Chang AB. The global burden of respiratory infections in indigenous children and adults: A review. Respirology 2017; 22:1518-1528.
https://doi.org/10.1111/resp.13131
PMid:28758310
2. Murray CJL, Lopez AD. Global mortality, disability, and the contribution of risk factors: global burden of disease study. The lancet 1997; 349(9063):1436-1442.
https://doi.org/10.1016/S0140-6736(96)07495-8
PMid:9164317
3. Neiderud CJ. How urbanization affects the epidemiology of emerging infectious diseases. Infect Ecol Epidemiol 2015; 5:27060.
https://doi.org/10.3402/iee.v5.27060
PMid:26112265 PMCid:PMC4481042
4. Govt. hospitals facing ventilator shortage. The Hindu: October 14, 2015. https://www.thehindu.com/news/cities/bangalore/govt-hospitals-facing-ventilator-shortage/article7759027.ece Accessed January 4, 2020.
5. Halpern P, Dang T, Epstein Y, et al. Six hours of manual ventilation with a bag-valve-mask device Is feasible and clinically consistent. Crit Care Med 2019; 47(3):e222-226.
https://doi.org/10.1097/CCM.0000000000003632
PMid:30640219
6. Holets SR, Davies JD. Should a portable ventilator be used in all in-hospital transports? Respir Care 2016; 61(6):839-853.
https://doi.org/10.4187/respcare.04745
PMid:27235317
7. Chatburn RL. Understanding mechanical ventilators. Expert Review of Respiratory Medicine. 2012; 4(6): 809-819.
https://doi.org/10.1586/ers.10.66
PMid:21128755
8. Silva PL, Rocco PRM. The basics of respiratory mechanics: ventilator-derived parameters. Ann Transl Med 2018; 6(19):376.
https://doi.org/10.21037/atm.2018.06.06
PMid:30460250 PMCid:PMC6212352
9. Nieman GF, Gatto LA, Habashi NM. Impact of mechanical ventilation on the pathophysiology of progressive acute lung injury. J Appl Physiol 2015; 119:1245-1261.
https://doi.org/10.1152/japplphysiol.00659.2015
PMid:26472873
10. Darwood A, McCanny J, Kwasnicki R, et al. The design and evaluation of a novel low-cost portable ventilator. Anaesthesia 2019; 74(11):1406-1415.
https://doi.org/10.1111/anae.14726
PMid:31161650
11. Otten D, Liao MM, Wolken Ret al. Comparison of bag-valve-mask hand-sealing techniques in a simulated model. Ann Emerg Med 2014; 63(1):6-12.e3.
https://doi.org/10.1016/j.annemergmed.2013.07.014
PMid:23937957 PMCid:PMC4866830
12. Khoury A, Sall FS, Luca AD, et al. Evaluation of bag-valve-mask ventilation in manikin studies: What are the current limitations? BioMed Res Int 2016; 2016:1-8.
https://doi.org/10.1155/2016/4521767
PMid:27294119 PMCid:PMC4884794
13. Vicente VC, Padilla JN, Tanguilig III BT. Portable automated bag-valve mask with android technology. Int J Adv Technol Eng Exploration 2016; 3(16):28-35.
https://doi.org/10.19101/IJATEE.2016.316004
14. Culbreth RE, Gardenhire DS. Manual bag valve mask ventilation performance among respiratory therapists. Heart Lung 2021; 50(3):471-475.
https://doi.org/10.1016/j.hrtlng.2020.10.012
PMid:33138977 PMCid:PMC7604178
15. Morley CJ, Dawson JA, Stewart MJ, et al. The effect of a PEEP valve on a laerdal neonatal self-inflating resuscitation bag. Journal of Pediatrics and Child Health 2010; 46:51-56.
https://doi.org/10.1111/j.1440-1754.2009.01617.x
PMid:19943861
16. Bucher JT, Vashisht R, Ladd M, et al. Bag Mask Ventilation. Treasure Island (FL): StatPearls Publishing; 2021.
17. Bayram B, Şancı E. Invasive mechanical ventilation in the emergency department. Turk J Emerg Med 2019; 19(2):43-52.
https://doi.org/10.1016/j.tjem.2019.03.001
PMid:31065603 PMCid:PMC6495062
18. Fludger S, Klein A. Portable ventilators. Continuing Education in Anaesthesia Critical Care & Pain 2008; 8(6):199-203.
https://doi.org/10.1093/bjaceaccp/mkn039
19. Hussey SG, Ryan CA, Murphy BP. Comparison of three manual ventilation devices using an intubated mannequin. Arch Dis Child Fetal Neonatal Ed 2004; 89(6):F490-493.
https://doi.org/10.1136/adc.2003.047712
PMid:15499138 PMCid:PMC1721775
20. Gruslova, AB, Katta N, Cabe AG, et al., Data automated bag breathing unit for COVID-19 ventilator shortages. Intensive Care Med Exp 2021; 18;9(1):54.
https://doi.org/10.1186/s40635-021-00419-2
PMid:34657982 PMCid:PMC8520856
21. Branson R, Dichter JR, Feldman H, et al. The US strategic national stockpile ventilators in coronavirus disease 2019: A comparison of functionality and analysis regarding the emergency purchase of 200,000 Devices. Chest 2021; 159(2):634-652.
https://doi.org/10.1016/j.chest.2020.09.085
PMid:32971074 PMCid:PMC7503115
22. Fang Z, Li AI, Wang H, et al. AmbuBox: A Fast-Deployable Low-Cost Ventilator for COVID-19 Emergent Care. SLAS Technol 2020; 25(6):573-584.
https://doi.org/10.1177/2472630320953801
PMid:32882150 PMCid:PMC7472193
23. Chu DK, Kim LH-Y, Young PJ, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet 2018; 391(10131):1693-1705.
https://doi.org/10.1016/S0140-6736(18)30479-3
PMid:29726345
24. Edmark L, Kostova-Aherdan K, Enlund M, et al. Optimal oxygen concentration during induction of general anesthesia. Anesthesiology 2003; 98(1):28-33.
https://doi.org/10.1097/00000542-200301000-00008
PMid:12502975
25. Brown AG, Visram AR, Jones RD, et al. Preoperative and postoperative oxygen saturation in the elderly following spinal or general anaesthesia-an audit of current practice. Anaesth Intensive Care 1994; 22(2):150-154.
https://doi.org/10.1177/0310057X9402200205
PMid:8210017
26. Ehrenfeld JM, Funk LM, Van Schalkwyk J, et al. The incidence of hypoxemia during surgery: evidence from two institutions. Can J Anaesth 2010; 57(10):888-897.
https://doi.org/10.1007/s12630-010-9366-5
PMid:20680710 PMCid:PMC2991088
27. Allegranzi B, Zayed B, Bischoff P, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis 2016; 16(12):e288-303.
https://doi.org/10.1016/S1473-3099(16)30402-9
PMid:27816414
28. Ball L, Lumb AB, Pelosi P. Intraoperative fraction of inspired oxygen: bringing back the focus on patient outcome. BJA Br J Anaesth 2017; 119(1):16-18.
https://doi.org/10.1093/bja/aex176
PMid:28974078
29. Neto AS, Hemmes SNT, Barbas CSV, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med 2014; 2(12):1007-1015.
https://doi.org/10.1016/S2213-2600(14)70228-0
PMid:25466352
30. Martin DS, Grocott MPW. Oxygen therapy and anaesthesia: too much of a good thing? Anaesthesia 2015; 70(5):522-527.
https://doi.org/10.1111/anae.13081
PMid:25866039
31. Mach WJ, Thimmesch AR, Pierce JT, et al. Consequences of hyperoxia and the toxicity of oxygen in the Lung. Nurs Res Pract 2011; 2011:1-7.
https://doi.org/10.1155/2011/260482
PMid:21994818 PMCid:PMC3169834